A robust identification method for nonlinear filters using neural networks.
نویسندگان
چکیده
منابع مشابه
rodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Nonlinear System Identification Using Spatiotemporal Neural Networks
The so-called spatiotemporal neural network is considered. This is a neural network where the conventional weight multiplication operation is replaced by a linear filtering operation [l]. A training algorithm is derived for such networks. The problem of nonlinear system identification is considered as an application for spatiotemporal networks. Nonlinear system identification is one of the chal...
متن کاملRobust Adaptive Identification of Nonlinear System Using Neural Network
It is well known that disturbance can cause divergence of neural networks in the identification of nonlinear systems. Sufficient conditions using so-called modified algorithms are available to provide guaranteed convergence for adaptive system. They are dead zone scheme, adaptive law modification, and σ-modification. These schemes normally require knowledge of the upper bound of the disturbance...
متن کاملRobust nonlinear system identification using neural-network models
We study the problem of identification for nonlinear systems in the presence of unknown driving noise, using both feedforward multilayer neural network and radial basis function network models. Our objective is to resolve the difficulty associated with the persistency of excitation condition inherent to the standard schemes in the neural identification literature. This difficulty is circumvente...
متن کاملDynamic Sliding Mode Control of Nonlinear Systems Using Neural Networks
Dynamic sliding mode control (DSMC) of nonlinear systems using neural networks is proposed. In DSMC the chattering is removed due to the integrator which is placed before the input control signal of the plant. However, in DSMC the augmented system is one dimension bigger than the actual system i.e. the states number of augmented system is more than the actual system and then to control of such ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computer Science and Cybernetics
سال: 2012
ISSN: 1813-9663,1813-9663
DOI: 10.15625/1813-9663/21/2/1445